Differential Equation
Group Theory exercise 7 solution pdf.
Concept:
1. Groupoid.
2.Semigroup
3.Monoid.
4.Quasigroup.
1.Groupoid:
Let G be a non-empty set on which a binary composition "o" is defined . Some algebraic structure is imposed on G by the composition"o"
and (G,o) becomes an. algebraic syst-
em .
The algebraic system (G,*) is
said to be a groupoid. The groupoid
(G,*) is comprised of two entities ,the set G and the composition * on G.The same set G may form different groupoids with respect to different
binary composition on it.
2.Semigroup:
A groupoid (G,*) is said to be a semigroup if * is associative .
A semigroup ( G,*) is said to be a commitative semigroup if * is
commutative.
3.Monoid:
A semigroup (G,*) containing
the identity element is said to be a
monoid . Therefore an algebraic system (G,*) is said to be a monoid if
(i) a*(b*c)=(a*b)*c ; for all a,b,c€G
(ii) there exist an element e in G
such that e*a=a*e=a for all a in G .
A monoid (G,*) is said to be a commutative monoid if * be commutative.
4.Quasigroup:
A groupoid (G,*) is said to be a quasigroup if for any two element a,b€ G, each of the equation
a*b=b and y*a=b has a unique solution in G.
-----------------------------------------------------------------
How to download ex 7:
Abstract Algebra ByS.K. Mapa exercise সমাধান পাওয়া যাবে এখানে।।
এই exercise এর pdf পেতে হলে নীচে দেওয়া ভিডিও লিংকে click করে ডাউনলোড করার পদ্ধতি দেখে নিতে হবে।।। নীচে দেওয়া pdf লিংকে click করলে ডাউনলোড হয়ে যাবে কিন্তু ওপেন করার জন্য একটা পাসওয়ার্ড লাগবে ।। পাসওয়ার্ড টা পাওয়ার জন্য ভিডিও টা দেখতে হবে।
Download pdf click here
Open করার পদ্ধতি
watch video click here
Comments
Post a Comment